Vortioxetine disinhibits pyramidal cell function and enhances synaptic plasticity in the rat hippocampus

نویسندگان

  • Elena Dale
  • Hong Zhang
  • Steven C Leiser
  • Yixin Xiao
  • Dunguo Lu
  • Charles R Yang
  • Niels Plath
  • Connie Sanchez
چکیده

Vortioxetine, a novel antidepressant with multimodal action, is a serotonin (5-HT)3, 5-HT7 and 5-HT1D receptor antagonist, a 5-HT1B receptor partial agonist, a 5-HT1A receptor agonist and a 5-HT transporter (SERT) inhibitor. Vortioxetine has been shown to improve cognitive performance in several preclinical rat models and in patients with major depressive disorder. Here we investigated the mechanistic basis for these effects by studying the effect of vortioxetine on synaptic transmission, long-term potentiation (LTP), a cellular correlate of learning and memory, and theta oscillations in the rat hippocampus and frontal cortex. Vortioxetine was found to prevent the 5-HT-induced increase in inhibitory post-synaptic potentials recorded from CA1 pyramidal cells, most likely by 5-HT3 receptor antagonism. Vortioxetine also enhanced LTP in the CA1 region of the hippocampus. Finally, vortioxetine increased fronto-cortical theta power during active wake in whole animal electroencephalographic recordings. In comparison, the selective SERT inhibitor escitalopram showed no effect on any of these measures. Taken together, our results indicate that vortioxetine can increase pyramidal cell output, which leads to enhanced synaptic plasticity in the hippocampus. Given the central role of the hippocampus in cognition, these findings may provide a cellular correlate to the observed preclinical and clinical cognition-enhancing effects of vortioxetine.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cysteamine pretreatment reduces Mg2+-free medium-induced plasticity in the CA1 region of the rat hippocampal slices

Extracellular population responses are largely preferred for the study of long-term potentiation (LTP). The effect of Mg2+-free medium on changes in activity and plasticity of Schaffer collateral-CA1 pyramidal cell synapses was examined. Hippcampal slices from cysteamine-treated (200 mg/kg, s.c.) and saline-injected (1 ml/kg, s.c.) albino rats were perfused with ACSF. Population spikes (PS) wer...

متن کامل

Cysteamine pretreatment reduces Mg2+-free medium-induced plasticity in the CA1 region of the rat hippocampal slices

Extracellular population responses are largely preferred for the study of long-term potentiation (LTP). The effect of Mg2+-free medium on changes in activity and plasticity of Schaffer collateral-CA1 pyramidal cell synapses was examined. Hippcampal slices from cysteamine-treated (200 mg/kg, s.c.) and saline-injected (1 ml/kg, s.c.) albino rats were perfused with ACSF. Population spikes (PS) wer...

متن کامل

The effect of ketamine on synaptic transmission and synaptic plasticity in CA1 area of rat hippocampal slices

The effect of ketamine (1-100 µM), which has NMDA receptor antagonist properties, on synaptic transmission and long-term potentiation (LTP) in CAl area of rat hippocampus was examined in vitro. Field potentials were recorded in pyramidal cell layer following Schaffer collateral stimulation. Primed-burst stimulation (PEs) was used for induction of LTP. The amplitude of population spiks (PS) was ...

متن کامل

Chemical kindling enhances the Schaffer collateral-CAl pyramidal cell synaptic transmission in anesthetized rats

Epilepsy is one of the common disorders in human community. Clinical observations have shown that epileptic patients have often difficulty in learning and memory. Kindling is a laboratory model for studying epilepsy and its complications. This experiment was designed to study the effect of chemical kindling on Schaffer collateral-CA1 pyramidal cell synaptic transmission using pentylenetetrazole...

متن کامل

Aspirin changes short term synaptic plasticity in CA1 area of the rat hippocampus

Introduction: The prostaglandin E2 (PGE2), a cyclooxygenase (COX) product, play critical roles in the synaptic plasticity. Therefore, long term use of COX inhibitors may impair the synaptic plasticity. Considering the wide clinical administration of aspirin and its unknown effects on information processing in the brain, the effect of aspirin and sodium salicylate on the short term synaptic p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2014